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Abstract. Cloudwater acidity affects the atmospheric chemistry of sulfate and organic aerosol formation, halogen radical 

cycling, and trace metal speciation. Rainwater acidity including post-depositional inputs adversely affects soil and freshwater 

ecosystems. Here we use the GEOS-Chem model of atmospheric chemistry to simulate the global distributions of cloud- and 10 

rainwater acidity, and the total acid inputs to ecosystems from wet deposition. The model accounts for strong acids (H2SO4, 

HNO3, HCl), weak acids (HCOOH, CH3COOH, CO2, SO2), and weak bases (NH3, dust and sea salt aerosol alkalinity). We 

compile a global dataset of cloudwater pH measurements for comparison with the model. The global mean observed 

cloudwater pH is 5.2 ± 0.9, compared to 5.0 ± 0.8 in the model, with a range of 3 to 8 depending on region. The lowest values 

are over East Asia and the highest values are over deserts. Cloudwater pH over East Asia is low because of large acid inputs 15 

(H2SO4, HNO3), despite NH3 and dust neutralizing 70% of these inputs. Cloudwater pH is typically 4–5 over the US and 

Europe. Carboxylic acids account for less than 25% of cloudwater H+ in the northern hemisphere on an annual basis, but 25–

50% in the southern hemisphere and over 50% in the southern tropical continents where they push the cloudwater pH below 

4.5. Anthropogenic emissions of SO2 and NOx (precursors of H2SO4 and HNO3) are decreasing at northern mid-latitudes, but 

the effect on cloudwater pH is strongly buffered by NH4+ and carboxylic acids. The global mean rainwater pH is 5.5 in GEOS-20 

Chem, higher than the cloudwater pH because of dilution and below-cloud scavenging of NH3 and dust. GEOS-Chem 

successfully reproduces the rainwater pH observations in North America, Europe, and eastern Asia. Carboxylic acids, which 

are undetected in routine observations due to biodegradation, lower the annual mean rainwater pH in these areas by 0.2 units. 

The acid wet deposition flux to terrestrial ecosystems taking into account the acidifying potential of NO3- and NH4+ in N-

saturated ecosystems exceeds 50 meq m-2 a-1 in East Asia and the Americas, which would affect sensitive ecosystems. NH4+ 25 

is the dominant acidifying species in wet deposition, contributing 41% of the global acid flux to continents under N-saturated 

conditions. 

1 Introduction 

Cloudwater acidity (H+ concentration) affects global atmospheric chemistry in a number of ways. It controls the rates of 

aqueous-phase reactions that (1) oxidize sulfur dioxide (SO2) to sulfate aerosols (Martin et al., 1981; Calvert et al., 1985), (2) 30 
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oxidize dissolved organic compounds to less volatile forms leading to secondary organic aerosols (Ervens et al., 2011; 

Herrmann et al., 2015), and (3) convert halides into halogen radicals (von Glasow and Crutzen, 2003; Platt and Hönninger, 

2003). It affects the solubility and bioavailability of iron in aerosol particles and thus the input of this micronutrient to marine 

ecosystems (Mahowald et al., 2005). Acidic deposition has a range of environmental effects on soil and freshwater ecosystems 

(Driscoll et al., 2001). Cloud- and rainwater acidity is affected in a complex way by natural and anthropogenic emissions, but 35 

there has been little effort so far to evaluate the ability of global models to represent this. Here we present such an evaluation 

with the GEOS-Chem atmospheric chemistry model and go on to discuss the factors controlling cloud- and rainwater acidity 

on a global scale. 

 

Cloud- and rainwater H+ concentrations are determined by the balance between dissolved acids (H+ donors) and bases (H+ 40 

acceptors). Sulfuric acid (H2SO4), nitric acid (HNO3), and hydrogen chloride (HCl) are the major strong acids in the 

atmosphere, and they dissociate completely in cloud- and rainwater. The major weak acids are CO2, SO2, and carboxylic acids 

including formic acid (HCOOH), and acetic acid (CH3COOH). Ammonia (NH3) and alkaline dust particles are the major bases. 

Atmospheric acidity is commonly referenced to the CO2–H2O system (pH 5.6 at current CO2 levels), with lower pH referred 

to as acidic conditions and higher pH as alkaline conditions. Cloudwater pH generally varies between 3 and 7, with highly 45 

acidic cloudwater typically found in industrialized areas with high SO2 and nitrogen oxides (NOx) emissions, and alkaline 

cloudwater found in agricultural and dusty areas (Warneck, 2000; Pye et al., 2020). Rainwater pH varies in a similar pattern 

(Dentener and Crutzen, 1994; Vet et al., 2014) but differs from cloudwater pH because of dilution (Weathers et al., 1988; 

Bormann et al., 1989), riming (Collett et al., 1993), below-cloud scavenging (Castillo et al., 1983; Zinder et al., 1988; Ayers 

and Gillett, 1988), and oxidation chemistry within raindrops (Overton et al., 1979; Graedel and Goldberg, 1983). 50 

 

The chemical and physical processes governing cloud- and rainwater acidity have been well-established since the 1980s 

(Morgan, 1982; NRC, 1983; Stumm et al., 1987). They have been incorporated in many regional models focused on acid 

deposition (Chang et al., 1987; Venkatram et al., 1988; Carmichael et al., 1991; Hass et al., 1993; Olendrzynski et al., 2000; 

Langner et al., 2005) and global models focused on sulfur and nitrogen deposition (Dentener and Crutzen, 1994; Rodhe et al., 55 

1995; Bouwman et al., 2002; Rodhe et al., 2002; Tost et al., 2007; Paulot et al., 2018). A few global modeling studies have 

focused on rainwater pH (Dentener and Crutzen, 1994; Rodhe et al., 1995, 2002; Tost et al., 2007). These models calculated 

rainwater [H+] from the rainwater concentrations of SO42-, NO3-, NH4+, HCO3-, and CO32- using ionic charge balance. Rodhe 

et al. (2002) also included dust alkalinity. None included carboxylic acids, which are known to be important but biodegrade 

rapidly after deposition (Keene et al., 1983; Keene and Galloway, 1984). 60 

 

Cloudwater pH has received less attention in models. Some current global atmospheric chemistry models assume a constant 

cloudwater pH for aqueous reactions (S. Watanabe et al., 2011; Søvde et al., 2012), while others calculate it explicitly from 

the balance of acids and bases but again generally neglecting dust alkalinity and carboxylic acids (Tost et al., 2007; Huijnen 
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et al., 2010; Myriokefalitakis et al., 2011; Alexander et al., 2012; Lamarque et al., 2012; Simpson et al., 2012). Pye et al. (2020) 65 

presented the cloudwater pH values simulated by five such models and included a limited comparison with observations. They 

found large differences among models particularly in dusty areas where pH estimates varied by 3–4 units. All models showed 

large systematic biases compared to observations. In light of these findings, Pye et al. (2020) highlighted the need for 

improvements in the cloudwater simulations including further evaluation with observations.  

 70 

Here we present a global analysis of cloud- and rainwater pH in the GEOS-Chem model with an improved cloudwater pH 

calculation, including in particular carboxylic acids and dust alkalinity, and an explicit rainwater pH calculation. We evaluate 

the simulation with extensive cloud- and rainwater measurements and determine the sources of acidity and alkalinity in 

different parts of the world. We examine the buffering effects of NH3 and carboxylic acids on cloudwater pH, and the changes 

in acid inputs to terrestrial ecosystems from post-depositional processes. 75 

2 Model description 

We use the GEOS-Chem atmospheric chemistry model (www.geos-chem.org) version v11-02 with a number of modifications, 

some from more recent GEOS-Chem versions and some specifically from this work. The model is driven by assimilated 

meteorological fields from the NASA Global Modeling and Assimilation Office’s Modern-Era Retrospective analysis for 

Research and Applications, version 2 (MERRA-2) system (Gelaro et al., 2017). These fields include in particular cloudwater 80 

liquid and ice content, cloud volume fraction, and 3-D liquid and ice precipitation fluxes, updated every three hours. GEOS-

Chem includes detailed NOx-hydrocarbon-aerosol-halogen chemistry (Mao et al., 2013; Kim et al., 2015; Travis et al., 2016; 

Sherwen et al., 2016), and here we have added recent halogen updates (X. Wang et al., 2019).  The model distinguishes between 

fine and coarse aerosol but does not otherwise include aerosol microphysics. Wet deposition follows the algorithm of Liu et 

al. (2001) including rainout (in-cloud scavenging), washout (below-cloud scavenging), and scavenging in convective updrafts, 85 

with updates by Q. Wang et al. (2011) and Amos et al. (2012). Dry deposition follows a standard resistance-in-series scheme 

(Wesely, 1989; Y. Wang et al., 1998). We conduct the simulation on a global 4º latitude × 5º longitude grid for the year 2013 

following an initialization period of one year.  

2.1 Emissions and acid-producing chemistry 

Here we describe the GEOS-Chem emissions and chemistry most relevant to the simulation of cloud- and rainwater acidity.   90 

Emissions are calculated by the Harvard-NASA Emissions Component (HEMCO) (Keller et al., 2014). Default anthropogenic 

emissions of SO2, NOx, and NH3 are from the global CEDS emissions inventory for 2013 (Hoesly et al., 2018). They are 

superseded by regional emissions inventories including MIX over Asia for 2010 (M. Li et al., 2017), MEIC over China for 

2013 (Zheng et al., 2018), NEI 2011 over the US scaled to 2013 (Travis et al., 2016; U.S. Environmental Protection Agency, 

2018), APEI over Canada for 2013 (van Donkelaar et al., 2008), EMEP 2008 over Europe scaled to 2013 (EEA, 2019) and 95 
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DICE over Africa for 2013 (Marais and Wiedinmyer, 2016). Ship SO2 emissions are from Eyring et al. (2005). Ship NOx 

emissions are from the ICOADS inventory (C. Wang et al., 2008) and are pre-processed with the PARANOX ship plume 

model (Vinken et al., 2011; Holmes et al., 2014). Aircraft emissions are from the AEIC inventory (Stettler et al., 2011). 

Biomass burning emissions are from GFED v4 (van der Werf et al., 2017). Natural emissions include NOx from lightning (L. 

Murray et al., 2012) and soil (Hudman et al., 2012), volcanic SO2 (Fisher et al., 2011), marine dimethyl sulfide (DMS) (Breider 100 

et al., 2017), and NH3 from oceans, natural soils, and human population (Bouwman et al., 1997). Sea salt aerosol emissions in 

two size classes (fine and coarse) follow Jaeglé et al. (2011). Dust emissions include desert and semi-desert sources (Fairlie et 

al., 2007; Ridley et al., 2013), and combustion and industrial sources (Philip et al., 2017) in four size classes (one fine and 

three coarse). Biogenic volatile organic compounds (VOC) emissions are from MEGAN (Guenther et al., 2012; Hu et al., 

2015). 105 

 

Sulfur chemistry in GEOS-Chem includes oxidation of DMS to SO2 and methanesulfonic acid (MSA), gas-phase oxidation of 

SO2 to H2SO4, and aqueous-phase oxidation of SO2 to H2SO4 in clouds, rain, and alkaline sea salt aerosols (Alexander et al., 

2005, 2009; Q. Chen et al., 2017). Nitrogen chemistry includes oxidation of NOx to HNO3 in the gas phase, and in the aqueous 

phase of aerosols and clouds (McDuffie et al., 2018; Holmes et al., 2019). Tropospheric HCl is mainly from acid displacement 110 

reactions on sea salt aerosols (X. Wang et al., 2019). 

 

HNO3, HCl, and NH3 are semi-volatile and their gas-particle partitioning affects their scavenging efficiency in cloud- and 

rainwater (Amos et al., 2012). We calculate this partitioning at bulk thermodynamic equilibrium using ISORROPIA II for the 

H2SO4-HNO3-HCl-NH3-NVC metastable aqueous system, where NVC represents the non-volatile cations from fine-mode sea 115 

salt aerosol (X. Wang et al., 2019). The uptake of HNO3 and release of HCl (acid displacement) on coarse-mode sea salt 

aerosol is treated as a kinetic process (X. Wang et al., 2019).  

2.2 Simulation of HCOOH and CH3COOH  

The most important carboxylic acids for cloud- and rainwater acidity are HCOOH (pKa = 3.8 at 298K) and CH3COOH (pKa = 

4.8 at 298K) (Morgan, 1982; Keene et al., 1983). They are present in the atmosphere at comparable concentrations (Talbot et 120 

al., 1997) but HCOOH is more important for contributing to acidity because of its higher Henry’s law solubility and lower 

pKa. Sources of these acids include secondary production from VOC oxidation and direct emissions from biomass burning, 

fossil-fuels, soils, and vegetation (Khare et al., 1999), but these are poorly understood and models greatly underestimate 

atmospheric concentrations (Paulot et al., 2011; Stavrakou et al., 2012; Millet et al., 2015; Khan et al., 2018). Here we use the 

previous GEOS-Chem HCOOH simulation by Millet et al. (2015) which scales up the biogenic emissions from the MEGAN 125 

inventory (Guenther et al., 2012) in order to fit atmospheric observations over the US. This yields a global HCOOH source of 

1900 Gmol a-1. Stavrakou et al. (2012) previously estimated a global HCOOH source of 2200–2600 Gmol a-1 from inversion 

of satellite data. In addition, we assume a minimum background mixing ratio of 100 pptv (50 pptv south of 60°S), based on 
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measurements in the marine boundary layer and the free troposphere (Arlander et al., 1990; Talbot et al., 1990, 1997; Legrand 

et al., 2004) and satellite-derived free troposphere HCOOH columns over marine areas of 1–2×1015 molecules cm-2 (Franco et 130 

al., 2020).  

 

Our CH3COOH simulation follows the standard GEOS-Chem mechanism (Mao et al., 2013; Travis et al., 2016) without further 

improvement, except that the minimum background CH3COOH concentration is also taken to be 100 pptv (50 pptv south of 

60°S), based on observations in the marine boundary layer and the free troposphere (Arlander et al., 1990; Talbot et al., 1990, 135 

1997; Helas et al., 1992; Franco et al., 2020). The global simulated CH3COOH source is 1000 Gmol a-1. Other modeling studies 

attempting to fit CH3COOH observations have estimated a source in the range 1700–3900 Gmol a-1 (Baboukas et al., 2000; 

Khan et al., 2018).  

 

Figure 1 compares annual mean GEOS-Chem wet deposition fluxes of HCOOH and CH3COOH with observations from the 140 

compilations of Vet et al. (2014) and Keene et al. (2015). We find that the mean GEOS-Chem HCOOH flux (7.5 mmol m-2   

a-1) is consistent with the mean of the observations (6.9 mmol m-2 a-1). The model captures the high fluxes observed in the 

tropical continents where there are large biogenic sources, and the low fluxes observed at marine sites. GEOS-Chem 

underestimates the CH3COOH flux by a factor of 4. The observed patterns of HCOOH and CH3COOH fluxes are similar, 

suggesting that model CH3COOH could be corrected similarly to HCOOH in future work by scaling up biogenic emission.  145 

2.3 Calculation of cloud- and rainwater composition and pH 

Cloudwater composition is computed locally in each grid cell containing liquid cloudwater over 30-min time steps using the 

in-cloud liquid water content and cloud volume fraction from MERRA-2. Dissolution of gases in the cloud droplets follows 

the Henry’s law constants of Table 1 and acid/base dissociation constants of Table 2. We assume that 70% of fine aerosol mass 

and 100% of coarse aerosol mass are partitioned into cloudwater (Hegg et al., 1984; Alexander et al., 2012). Sulfate-nitrate-150 

ammonium and sea salt particles dissolve completely in cloudwater, and the alkaline component of the dust particles also 

dissolves. Freshly emitted sea salt particles contain an alkalinity of 0.07 eq kg-1 (Alexander et al., 2005), while freshly emitted 

dust particles contain an alkalinity of 4.5 eq kg-1 based on the assumption of 7.1% Ca2+ and 1.1% Mg2+ by dry mass 

(Engelbrecht et al., 2016) with CO32- as anion. Sea salt NVCs are expressed as Na+ equivalents, while dust NVCs are expressed 

as Ca2+ equivalents. The upper limit of Ca2+ concentration is set by formation of CaCO3(s).  155 

 

The calculation of cloudwater composition in the cloudy fraction of each grid cell assumes a closed system where the summed 

concentrations of gas and cloudwater species in Table 3 are conserved, and the partitioning is then computed following the 

equilibria of Tables 1 and 2. The calculation is done by solving the electroneutrality equation iteratively using Newton’s 

method (Moch et al., 2020). This improves on the original calculation of cloudwater composition in GEOS-Chem (Alexander 160 
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et al., 2012) through the inclusion of additional acidic and alkaline species (HCl, HCOOH, CH3COOH, NVCs) and using a 

more stable numerical solver.  

 

We will present results as time averages (mainly annual) and spatial averages (vertical or zonal). The time- and space- averaged 

cloudwater [H+] cannot be calculated directly from the [H+] computed at each model time step in each grid cell because [H+] 165 

is a non-conservative quantity controlled by the other acidic and basic species in cloudwater (Liljestrand, 1985). Therefore, 

we calculate the average cloudwater [H+] from the corresponding volume weighted average (VWA) concentrations of the 

cloudwater ions. We assume that all acids and bases except carbonates are conserved in the aqueous phase. For HCOOH and 

CH3COOH, the total (dissociated + undissociated) amounts are assumed to be conserved. Thus, the time- and space-averaged 

cloudwater [H+] is given by: 170 

[H!]=2[SO"#$] + [NO%$] + [Cl$] + [HSO%$] + 2[SO%#$] + [HCOO$] + [CH%COO$] + [HCO%$] − [NH"!] − 2[Ca#!] − [Na!]    (1) 

where [A] represents the VWA molar concentration in cloudwater of species A over the time period and spatial domain of 

interest. We calculate [A]  from the concentration of the species,	[A]!,#, and the cloud liquid water content, 𝐿!,#, at each model 

time step i and grid cell j:   

[A] = 
∑ ∑ %!,#	[(]!,#

$
!%&

𝑚
𝑗=1
∑ ∑ %!,#$

!%&
𝑚
𝑗=1

      (2) 175 

where [1, t] is the averaging time period and [1, m] is the ensemble of grid cells included in the average. [CO32-] and [OH-] are 

negligible compared to other anions over the range of cloudwater pH values (< 8). [HCOO*] is calculated from the total 

aqueous concentration, [HCOOH]+,,- = [HCOOH]+, + [HCOO*], as follows: 

[HCOO*] = + Ka

Ka.[/']
, [HCOOH]+,,-      (3) 

where Ka is the HCOOH(aq)/HCOO– acid dissociation constant from Table 2 computed at the average cloudwater temperature 180 

for the time period and spatial domain. The same procedure is used for [CH0COO*]. [HCO0*] is calculated from equilibrium 

with atmospheric CO2 as follows: 

[HCO0*] =
1()*2+&3()*

[/']
      (4) 

where 𝐻45* and  𝐾67 are the Henry’s law coefficient for CO2 and the CO2(aq)/HCO3– acid dissociation constant, respectively, 

at the average cloudwater temperature for the period and domain (Tables 1 and 2). 𝑃45* is the CO2 partial pressure, taken to 185 

be 390 ppm as representative of 2013. Since [HCOO*], [CH0COO*], and [HCO0*] calculated in this way depend on [H.],  Eq. 

(1) is cubic in [H.]. The time- and space-averaged pH (pH) is calculated from [H.]: 

 pH = −log78 6[H.]7  (5) 
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There is some arbitrariness in assuming that NH3, SO2, and carboxylic acids do not equilibrate with the gas phase during 190 

averaging. We examined the sensitivity to this assumption by assuming alternatively that NH3T, SO2T, HCOOHT and 

CH3COOHT as defined in Table 3 (sum of gas-phase and aqueous-phase concentrations) are conserved and recalculating the 

gas–cloudwater equilibrium for the time-averaged conditions. We find no significant difference in the computed [H.].  

 

Calculation of rainwater VWA composition including [H.] follows the same approach as for cloudwater. In that case we use 195 

the model-archived wet deposition fluxes including contributions from in-cloud and below-cloud scavenging. We assume that 

SO2 is instantly oxidized by H2O2 (as available) in rainwater and is scavenged as SO42-. As with cloudwater, the maximum 

[Ca2+] is set by the formation of CaCO3(s). Rainwater pH measurements are generally reported as monthly means and do not 

account for HCOOH and CH3COOH, which biodegrade rapidly. To compare with measurements, we calculate a monthly [H.] 

for each grid cell by removing [HCOO*] and [CH3COO*]	from the charge balance in Eq. (1). From there we calculate the 200 

annual precipitation VWA pH: 

pH9:88888888 = −log78 +
∑ 3,	[/'],
&*
,%&
∑ 3,&*
,%&

,                                          (6) 

where	[H.]; is the mean rainwater [H+] and 𝑃; is the precipitation depth for month k.  

3 Results and discussion 

3.1 Global distribution of cloudwater pH and composition 205 

Figure 2 shows the global distribution of cloudwater pH as simulated by GEOS-Chem and as measured at mountain sites, 

coastal sites (marine fog), and from aircraft campaigns (Table A1). We exclude continental fogwater measurements because 

of their sensitivity to local emissions. The measurements span the period from 1980 to 2018, but near source regions we only 

include observations made after 2006. Some of the observations are taken from the Pye et al. (2020) compilation. 

 210 

The top panel shows the mean observed and simulated pH values. The observed values are as reported in the literature, where 

the computation of the mean is generally based on VWA [H+]. The model values are annual means below 700 hPa (≈3 km 

above sea level) for the year 2013. The bottom panel shows the observations aggregated by regions and arranged in ascending 

pH order, along with the corresponding GEOS-Chem values. For comparison with the observations, the model is sampled at 

the locations and months of the measurements. 215 

 

The global mean cloudwater pH in the observations is 5.2 ± 0.9, compared to 5.0 ± 0.8 in the model. Annual mean values in 

Fig. 2 range from 3 to 8, showing distinct spatial patterns. The spatial patterns can be understood from the distributions of 

acidic and basic ions shown in Fig. 3. Na+ and Cl- are major constituents of cloudwater in marine and coastal areas but are not 
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shown in the Fig. 3 because they are largely in balance and have little net effect on pH. Figure 3 also shows the percent 220 

contribution of each ion to the total anion or cation concentrations (contour lines). 

 

The lowest pH values are generally over East Asia, both in the observations and in the model, with values mostly below 4.3 in 

eastern and southern China and Japan. This is due in GEOS-Chem to extremely high [SO42-] and [NO3-], and despite 70% of 

these anions being balanced by NH4+ and dust cations. pH values remain low over the North Pacific (~4.5), despite much lower 225 

acid inputs, because less than half of the acidic anions are balanced by bases.  

 

Over the US and Europe, average pH values are in the range 4–5 both in the observations and in the model, with most of the 

acidity as NO3-, and NH4+ balancing over 50% of the acidic anions. The model shows higher values in the central US (~5.5) 

because of NH3 and dust emissions. Summertime observations in the southwest US by Hutchings et al. (2009) show a pH of 230 

6.3 due to large dust influence, but this seasonal dust emission is underestimated in GEOS-Chem (Fairlie et al., 2007). Over 

southern Europe, about 25% of the base cations are from Saharan dust. NH4+ is the main cation elsewhere in Europe. SO42- is 

the dominant acidic component over the northern midlatitude oceans because of the oceanic source of SO42- from the oxidation 

of DMS and because continental influence extends further for SO42- than for NO3- (Heald et al., 2006). Over the Arctic, the 

simulated pH is much lower (4–4.5) because of long-range transport of acidic species and less than 50% neutralization (Fisher 235 

et al., 2011). 

 

The carboxylate ions HCOO- and CH3COO- account for less than 25% of H+ throughout the extratropical northern hemisphere 

(Fig. 3). The carboxylic acids are more important relative contributors to H+ in the tropics and in the southern hemisphere, 

exceeding 50% in some areas of the tropical continents and southern midlatitudes. Ayers and Gillett (1988) found that 240 

carboxylic acids were responsible for observed cloudwater pH below 4 over tropical Australia, but GEOS-Chem 

underestimates carboxylic acids in that region (Fig. 1). Carboxylates were not measured in the Ecuador cloudwater 

measurements (Makowski Giannoni et al., 2016), but we find from the model that the carboxylic acids contribute about 50% 

of the H+. GEOS-Chem shows similar pH values as observed at Cape Grim (mean of 5.5), reflecting the low concentrations of 

acidic and basic species from continental sources. Cloudwater pH sampled on the Antarctic coast also has a mean pH of 5.5 245 

(Saxena and Lin, 1990) but the model is much lower over the Antarctic coast because of SO42- from oxidation of DMS. This 

may be because of sea salt alkalinity from blowing snow that is not accounted for in the model (Huang et al., 2018). 

 

Alkaline cloudwater (pH > 5.6) is found in the observations over western India, Tibet, and Morocco, consistent with the model 

where the alkalinity is mainly from dust. GEOS-Chem simulates pH of 6–8 over the area extending from the Sahara to the 250 

Gobi Desert. The transport of dust alkalinity from North Africa raises the cloudwater pH in the Caribbean to above 5.5, both 

in the observations (Gioda et al., 2011) and in the model.  
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Figure 4 shows the zonal mean distributions of cloudwater pH and cloud liquid water content (contour lines). In addition to 

the latitudinal variations described previously, cloudwater pH increases as the cloud liquid water content increases because of 255 

the effect of dilution. Liquid water content peaks at about 900 hPa, and decreases at higher altitudes, and this largely explains 

the mean variation of pH with altitude.  

 

Pye et al. (2020) showed in their review the annual mean tropospheric-column cloudwater pH from three models: CMAQ 

(northern hemisphere only), TM4-ECPL, and GEOS-Chem. They calculated the annual mean pH using VWA [H+] rather than 260 

Eq. (1). We find that their calculation method underestimates the pH over alkaline regions by 1–3 units but has little error for 

acidic regions. The GEOS-Chem results shown in Pye et al. (2020) follow the previous cloudwater [H+] calculation from 

Alexander et al. (2012), which is different from our calculation (Sect. 2). The resulting pH values are comparable over 

industrialized regions but differ by up to 2 units over tropical forests and deserts because carboxylic acids and dust alkalinity 

were not previously included. pH values were generally higher than 6 over the oceans in the previous GEOS-Chem simulation 265 

because of an error in the numerical solver. The pH values shown by Pye et al. (2020) for TM4-ECPL are lower than our 

simulation by 1–2 units over most areas, and would be inconsistent with the observations shown in Fig. 2. Our pH estimates 

are closest to those from CMAQ, which was the only model in Pye et al. (2020) that included dust alkalinity and HCOOH in 

the cloud water pH calculation. The zonal mean cloud water pH values from the ECHAM5/MESSy1 model presented by Tost 

et al. (2007) are 0.2–0.3 units higher than our values, likely because of their omission of carboxylic acids. 270 

 

Emissions of SO2 and NOx in the northern mid-latitude continents are decreasing rapidly because of air quality concerns 

(Hoesly et al., 2018; Zheng et al., 2018). Considering that NH3 and dust neutralize presently balance over 50% of the acidic 

anions over these continents (Fig. 3), one might expect large increases in cloudwater pH as SO2 and NOx emissions decrease. 

There is however a large buffering effect from the semi-volatile carboxylic acids and NH3. Consider the case of the US. Figure 275 

5 shows the mean simulated cloudwater composition for 2013 over the continental US, and the change in composition resulting 

from a factor of two decrease in strong acidity (SO42-, NO3-). The total concentrations of carboxylic acids (RCOOHT = 

HCOOHT + CH3COOHT) and ammonia (NH3T) are held at 2013 levels and the gas–cloudwater equilibrium is recalculated. For 

2013, the mean cloudwater pH is 4.7, a level at which only one-fourth of RCOOHT is present as carboxylate ions, and most of 

the NH3T is present as NH4+. Decreasing the strong acidity by half triples the dissociated fraction of RCOOHT and volatilizes 280 

a significant fraction of NH4+, which limits the increase in cloudwater pH to 5.7. Without this buffering effect, the pH would 

have increased by 2.1 units to 6.8. NH4+ volatilization exerts a stronger buffering effect than carboxylic acid dissolution 

because NH3T concentrations are much larger.  

3.2 Global distribution of rainwater pH and composition 

Figure 6 (left panel) shows the global distribution of annual mean rainwater pH for the year 2013. Here we define ‘rainwater’ 285 

as all precipitation water (both rain and snow). The pH averaging procedure is as described in Sect. 2.3. The global mean 
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rainwater pH is 5.5 and varies from 4.5 over industrialized areas and the tropical forests to 8 over deserts, showing the same 

spatial patterns as cloudwater pH but with lower acidity because of dilution. Figure 7 shows the simulated concentrations of 

rainwater ions, except for Na+ and Cl- which again do not contribute significantly to net acidity. Rainwater ion concentrations 

are on average 4 times more dilute than cloudwater concentrations (Fig. 3). The relative contribution of SO42- in industrialized 290 

regions is higher than for cloudwater because of additional SO42- from below-cloud scavenging of SO2. The NO3- contribution 

in central Africa is higher than for cloudwater because of high-altitude convective scavenging of HNO3 produced from 

lightning NOx. In Amazonia and tropical Africa, HCOO- and CH3COO- contribute a larger fraction of rainwater acidity 

compared to cloudwater because of below-cloud scavenging, and as a result the rainwater pH is similar to that of cloudwater. 

Similarly, below-cloud scavenging of desert-generated dust results in alkaline rainwater over a much larger area compared to 295 

cloudwater.  

 

The right panel in Fig. 6 shows the change in rainwater pH when the contribution from carboxylic acids is excluded. These 

acids biodegrade quickly, and thus their acidity is not generally captured by rainwater pH measurements. We find that rainwater 

pH increases by 0.4–1 unit in the Amazon, tropical Africa, and southeast Asia, consistent with observations (Andreae et al., 300 

1990; Sanhueza et al., 1992; Sigha-Nkamdjou et al., 2003; Yoboué et al., 2005). Over the US, Europe, and eastern China the 

increase in pH is 0.1–0.4 units, which is similar to the observed contribution of carboxylic acids to rainwater H+ (10–60%) in 

these areas (Keene and Galloway, 1984; Kawamura et al., 1996; Peña et al., 2002; Xu et al., 2010; Niu et al., 2018). Over the 

oceans, the change in pH from HCOOH and CH3COOH is small (~0.15 units) and in agreement with marine observations 

(Keene et al., 2015). 305 

 

Figure 8 compares the simulated annual VWA rainwater pH (pH9:88888888, Eq. 6) with observations from monitoring networks for 

the year 2013. Precipitation (rain and snow) pH observations are from the US National Trends Network (NTN) (NADP, 2019), 

the Canadian Air and Precipitation Monitoring Network (CAPMoN) (ECCC, 2018) , the European Monitoring and Evaluation 

Programme (EMEP) (EMEP, 2015), and the Acid Deposition Monitoring Network in East Asia (EANET) (EANET, 2019). 310 

We use monthly mean measurements from NTN (249 sites), EMEP (83 sites), and EANET (45 sites) and daily measurements 

from CAPMoN (30 sites), which we average to a monthly VWA [H+]. The monthly [H+] values are used to calculate pH9:88888888 

following Eq. (6). The acidity from HCOO- and CH3COO- is not accounted in the network measurements unless treated with 

biocide, which is done only in Malaysia. Thus, for comparison with observations, we use the simulated  pH9:88888888 calculated 

without HCOO- and CH3COO-. 315 

 

GEOS-Chem rainwater pH values are largely consistent with the observations, reproducing the observed regional means to 

within 0.1 pH unit (observed: 5.26–5.30, GEOS-Chem: 5.23–5.39). Carboxylic acids lower the mean GEOS-Chem pH by 

0.15–0.2 units. The model also generally reproduces the observed spatial variations within the regions. Observations and model 

show higher pH in the Midwest than in the rest of the US because of neutralization by agricultural NH3. Rainwater pH in 320 
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southern Europe is also relatively high because of Saharan dust influence. Model values there are lower than in Fig. 6 because 

of different forms used to calculate annual mean pH (Eq. 6 here instead of Eq. 1). High [SO42-] and [NO3-] and moderate 

neutralization lower the rainwater pH to below 4.5 in eastern China, Korea, and Japan. The high pH value observed in Xi’an 

(central China) is due to alkalinity from dust sources (EANET, 2016) but the corresponding dust influence in the model is 

shifted slightly to the northwest. The low pH observed over Chongqing (central China) is because of high SO2 and NOx 325 

emissions which are trapped locally by the surrounding terrain (Y. Chen et al., 2017). 

 

Our global distribution of rainwater pH can be compared to previous model simulations by Rodhe et al. (2002) and Tost et al. 

(2007). Neither included carboxylic acids and thus they overestimated pH values over tropical continents. Tost et al. (2007) 

did not include dust alkalinity either, resulting in large pH underestimates over desert regions. The pH values over eastern 330 

North America and Europe in these previous studies are about 0.5 units lower than in our simulation, reflecting the more recent 

decreases in SO2 and NOx emissions (Hoesly et al., 2018). 

3.3 Soil and freshwater acidification by wet deposition 

Acidification of soil and freshwater is one of the major adverse effects of wet deposition fluxes on ecosystems because it 

causes the leaching of nutrients, mobilizes toxic metals, and directly damages biota (Driscoll et al., 2001). Quantifying this 335 

effect requires accounting for post-depositional processes. The H+ flux associated with carboxylates and HCO3- is not relevant 

because carboxylic acids are readily consumed by bacteria, and the amount of HCO3- in ecosystems is controlled by the ambient 

CO2 concentrations (Reuss and Johnson, 1986). The acidifying effects of NO3- and NH4+ depend on the biotic demand for 

nitrogen (N) (Reuss and Johnson, 1986). In ecosystems with high N demand (so-called N-limited ecosystems), NO3- and NH4+ 

are readily assimilated by plants and microbes. Uptake of NO3- is accompanied by the uptake of H+ (or release of OH-), 340 

cancelling the acidic effect of NO3- deposition. NH4+ uptake is accompanied by the release of H+, reversing the neutralizing 

effect of NH4+. Therefore, in N-limited ecosystems the acidic flux is calculated as follows (Rodhe et al., 2002): 

𝐹H+(N-lim) = 𝐹SO4
2- − 𝐹dust NVC       (7) 

where F denotes the wet deposition flux in equivalents. However, in many industrialized regions, N deposition greatly exceeds 

the biotic demand and results in N-saturated conditions (Aber et al., 1989; Watmough et al., 2005; Gundersen et al., 2006; 345 

Duan et al., 2016). In such conditions, only a small fraction of the deposited NO3- and NH4+ is assimilated. The excess NO3- 

causes H+ accumulation, while the excess NH4+ can be converted by microbes to NO3- (nitrification), which releases 2H+ for 

every NH4+ converted and also results in net H+ formation. Considering the full acidifying potential of NO3- and NH4+, we 

calculate the acidic flux in N-saturated conditions as follows (Galloway, 1995; Rodhe et al., 2002):  

𝐹H+(N-sat) = 𝐹SO4
2- + 𝐹NO3

- + 𝐹NH4
+ − 𝐹dust NVC     (8) 350 

𝐹H+(N-sat) can be viewed as the upper limit of acidic inputs through wet deposition as some of the accumulated NO3- can 

denitrify to N2.  
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Figure 9 shows 𝐹H+(N-lim) and 𝐹H+(N-sat), along with the free H+ flux which represents the direct acid input to ecosystems 

excluding carboxylic acids. The global mean	𝐹H+(N-lim) over continents (4.1 meq m-2 a-1) is higher than the mean free H+ flux 355 

(3.1 meq m-2 a-1). The free H+ flux is higher than 𝐹H+(N-lim) over central Africa and Amazonia because of H+ associated with 

NO3- and HCO3-, respectively. 𝐹H+(N-lim) is highest over the eastern US, Central and South America, and East Asia, reflecting 

high SO42- fluxes. The global mean 𝐹H+(N-sat) over continents (18 meq m-2 a-1) is much larger than	𝐹H+(N-lim) and the free H+ 

flux because of acidity generated from NH4+ nitrification. Over eastern India, East and Southeast Asia, the eastern US, and 

Central and South America, 𝐹H+(N-sat) is more than 50 meq m-2 a-1, which exceeds the critical load for acidification of highly 360 

sensitive ecosystems with low acid buffering capacity (Kuylenstierna et al., 2001; Bouwman et al., 2002).  

 

The total wet deposition of individual ions over the continents is largest for NH4+ (1.3×1012 eq a-1) followed by SO42- (1.0×1012 

eq a-1) and NO3- (0.85×1012 eq a-1). Lamarque et al. (2013) reported that for the year 2000 the multi-model mean (± standard 

deviation) of the wet deposition flux over continents was higher for SO42- (1.5 ± 0.3 × 1012 eq a-1) than for NH4+ (1.2 ± 0.3 × 365 

1012 eq a-1) and NO3- (1.1 ± 0.2 × 1012 eq a-1). The decrease in the SO42- wet deposition flux between 2000 and 2013 reflects 

the global decrease of anthropogenic SO2 emissions (Hoesly et al., 2018). We find that NH4+ is now the largest source of 

acidifying wet deposition, contributing 41% of 𝐹H+(N-sat) over continents globally, and it will contribute even more in the future 

as global NH3 emissions continue to grow (Hoesly et al., 2018). 

4 Conclusions 370 

We used the GEOS-Chem global model of atmospheric chemistry to simulate the global distributions of cloudwater and 

rainwater acidity, and the total acid inputs from wet deposition to terrestrial ecosystems. This involved an improved pH 

calculation in GEOS-Chem including contributions from dust alkalinity, sea salt aerosol alkalinity, and carboxylic acids 

(HCOOH and CH3COOH). Our prime motivation was to better understand and evaluate the global cloudwater pH distribution 

in the model for future simulations of sulfate, organic, and halogen chemistry. Extending the analysis to rainwater pH provided 375 

further opportunity for model evaluation and allowed us to quantify post-depositional effects in acid inputs to ecosystems on 

a global scale.  

 

We compiled cloudwater pH measurements worldwide from the literature and compared them to the GEOS-Chem simulation. 

The global mean cloudwater pH is 5.2 ± 0.9 in the observations, and 5.0 ± 0.8 in GEOS-Chem sampled at the same locations. 380 

The lowest pH values of 3–4 are over East Asia because of high acid inputs and despite an average 70% neutralization by NH3 

and dust cations. Low pH values extend across the North Pacific because of weak neutralization. Cloudwater pH is 4–5 over 

the US and Europe with dominant acid input from HNO3 and over 50% neutralization from NH3. Alkaline cloudwater with 
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pH as high as 8 is found over the northern subtropical desert belt extending from the Atlantic Ocean to Mongolia, including 

western India. Carboxylic acids account for less than 25% of the cloudwater H+ in the northern hemisphere, but 25–50% in 385 

the southern hemisphere and over 50% in the southern tropical continents where they drive the pH to below 4.5. We find little 

dependence of cloudwater pH on altitude other than dilution from changes in liquid water content.   

 

Anthropogenic emissions of SO2 and NOx are decreasing rapidly in the developed world, and this together with the large 

fraction of neutralized acidity might be expected to lead to large increases in cloudwater pH. However, there is a strong 390 

buffering effect because of the semi-volatility of NH4+ and carboxylates. We find that a factor of 2 decrease in SO42- and NO3- 

inputs over the US increases the cloudwater pH by 1 unit, compared to an increase of 2.1 units in the absence of buffering.  

 

The global mean rainwater pH in GEOS-Chem is 5.5, higher than cloudwater pH because of dilution and below-cloud 

scavenging of bases (NH3, dust). Rainwater pH shows spatial patterns similar to cloudwater pH but is influenced more strongly 395 

by carboxylic acids and dust near source regions because of below-cloud scavenging. GEOS-Chem is consistent with the 

annual mean rainwater pH observed at monitoring networks in North America, Europe, and East Asia. We find that the 

carboxylic acids lower the rainwater pH by up to 1 unit in the Amazon, tropical Africa, and southeast Asia, and by about 0.2 

units in the US, Europe, and East Asia. This pH depression would not be seen in the observations because of fast biological 

consumption of the carboxylic acids after deposition.  400 

 

Lastly, we examined the total acid inputs to soil and freshwater from wet deposition, including the post-depositional effects 

from NH4+ and NO3- utilization by the biosphere. We find that total acid inputs under N-saturated conditions exceed 50 meq 

m-2 a-1 in many parts of East Asia and the Americas, a level that can damage sensitive ecosystems. NH4+ contributes 41% of 

the acid input under N-saturated conditions globally. 405 
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Table 1: Henry’s law coefficients for the calculations of cloud- and rainwater pHa 

Species H (M atm-1)  

at 298 K 

𝒅	𝐥𝐧	𝑯
𝒅(𝟏 𝑻⁄ )  (K) 

HNO3 2.1 × 105 0 

HCl 1.5 × 103 2300 

NH3 60 4200 

HCOOH 8.8 × 103 6100 

CH3COOH 4.0 × 103 6300 

SO2 1.2 3100 

CO2 3.4 × 10-2 2400 
a From the compilation of Sander (2015).  
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Table 2: Acid/base dissociation constants for the calculations of cloud- and rainwater pHa 

 

a From Pandis and Seinfeld (1989), except for CaCO3(s) (Nordstrom et al., 1990), and 
HCOOH(aq) and CH3COOH(aq) (Khare et al., 1999). 

  

Equilibrium reactions K (M or M2)  
at 298 K   

𝒅	ln	K
𝒅(1 T⁄ )  (K) 

HNO3 (aq) «  H+ + NO3-  15 8700 

HCl (aq) «  H+ + Cl-  1.7 × 106 6900 

NH4OH (aq) «  NH4+ + OH-  1.7 × 10-5 -450 

HCOOH (aq) «  H+ + HCOO-  1.8 × 10-4 150 

CH3COOH (aq) «  H+ + CH3COO-  1.7 × 10-5 50 

SO2•H2O «  H+ + HSO3-  1.3 × 10-2 2000 

HSO3- «  H+ + SO32- 6.6 × 10-8 1500 

CO2•H2O «  H+ + HCO3-  4.3 × 10-7 -1000 

HCO3- «  H+ + CO32- 4.7 × 10-11 -1800 

H2O «  H+ + OH- 1 × 10-14 -6700 

CaCO3(s) «  Ca2+ + CO32- 3.3 × 10-9 -1200 
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Table 3: Species included in the cloudwater pH calculationa 

 

 

a The calculation assumes a closed system for the cloudy fraction of the 
model grid cell where concentration totals (T) are conserved and are 
partitioned between species using the Henry’s law and acid-base 
dissociation equilibria of Tables 1 and 2, and the local cloudwater liquid 
water content and temperature.  

b H2SO4 has sufficiently low vapor pressure to be completely in the 
cloudwater phase, and H2SO4(aq) and HSO4- concentrations are 
negligible at typical cloudwater pH (> 3).  

c CO2(g) mixing ratio is taken to be 390 ppm as representative of 2013.   

Conserved totals ≡ Sum of partitioned species 

H2SO4,T ≡ SO42- (b) 

 HNO3,T ≡ HNO3(g) + HNO3(aq) + NO3- 

 HClT ≡ HCl(g) + HCl(aq) + Cl- 

 NH3,T ≡   NH3(g) + NH4OH(aq) + NH4+ 

HCOOHT ≡ HCOOH(g) + HCOOH(aq) +  HCOO- 

CH3COOHT ≡ CH3COOH(g) + CH3COOH(aq) + CH3COO- 

SO2,T ≡  SO2(g) + SO2(aq) + HSO3- + SO32- 

CO2,T  ≡  CO2(g) + CO2(aq) + HCO3- + CO32-  (c) 

CaT ≡ Ca2+ + CaCO3(s) 

NaT ≡ Na+ 
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Figure 1: Annual mean wet deposition fluxes of HCOOH and CH3COOH. The GEOS-Chem model values (contours) are for the 
year 2013 and the observations (circles) are for various years as compiled by Vet et al. (2014) and Keene et al. (2015). The 
compilations only include studies that used adequate methods to preserve HCOOH and CH3COOH in rainwater samples. We 
exclude studies with measurement periods of less than a year. For studies that reported only rainwater concentrations, we estimate 
the deposition fluxes using climatological rainfall data for the corresponding locations from the Global Precipitation Climatology 
Center (Meyer-Christoffer et al., 2018). The global mean observed fluxes and the corresponding GEOS-Chem fluxes are shown 
inset.
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Figure 2: Observed and simulated cloudwater pH. The top panel shows the GEOS-Chem annual mean cloudwater pH below 700 
hPa for the year 2013 along with cloudwater pH observations (filled circles) collected since 1980 (Table A1). See Sect. 2.3 for the 
procedure to compute average pH in the model. White color denotes areas where the topographic elevation is higher than 700 hPa. 
The maximum modeled and observed pH values are 8.2 and 7.3, respectively. The bottom panel shows the observations grouped by 5 
regions (Table A1), with means ± standard deviations calculated from the ensemble of data sets for the region, and the corresponding 
GEOS-Chem mean values sampled at the location and month of the measurements. The global mean ± standard deviation pH values 
computed from the regional mean observed and modeled values are inset in the bottom panel.
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Figure 3: GEOS-Chem cloudwater equivalent concentrations of major acidic and basic ions. Values are annual volume weighted 
averages below 700 hPa for the year 2013. The contour lines (25%, 50%, 75%) show the percent contribution of each ion to the total 
anion or cation equivalents. Na+ and Cl- are not included in this total because they are largely in balance and make little net 
contribution to acidity. White color denotes areas where the topographic elevation is higher than 700 hPa.  
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Figure 4: Zonal mean cloudwater pH simulated by GEOS-Chem. Values are annual volume weighted averages for the year 2013. 
The contour lines show the annual mean MERRA-2 cloud liquid water content in g m-3 for the cloudy fraction of grid cells where a 
liquid cloud is present. White color denotes areas where the cloud liquid water content is below 0.01 g m-3.  
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Figure 5: Sensitivity of cloudwater pH to decreasing acid inputs over the contiguous US. The upper bars show the volume weighted 
average concentrations of acidic and basic ions for 2013, with additional dashed lines showing the undissociated concentrations of 
carboxylic acids (RCOOH) and the gas-phase concentration of ammonia (NH3). The lower bars show the effect of decreasing       
[SO4

2-] and [NO3
-] by half relative to 2013 levels. All concentrations are expressed as cloudwater equivalents. The corresponding pH 

values are indicated. 
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Figure 6: Annual mean rainwater pH simulated by GEOS-Chem for 2013. The right panel shows the change in rainwater pH when 
[HCOO-] and [CH3COO-] are excluded from the ionic charge balance. Rainwater as defined here includes snow as well as rain. See 
Sect. 2.3 for the procedure to compute average pH in the model. 
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Figure 7: GEOS-Chem rainwater equivalent concentrations of major acidic and basic ions for the year 2013. The contour lines 
(25%, 50%, 75%) show the percent contribution of each ion to the total anion or cation equivalents. Na+ and Cl- are not included in 
this total because they are largely in balance and make little net contribution to acidity.
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Figure 8: Annual volume weighted average (VWA) rainwater pH over North America, Europe and East Asia for the year 2013. 
Values are the precipitation volume weighted averages of the monthly means (Eq. 6). The GEOS-Chem model values (solid 
background) exclude RCOOH (HCOOH and CH3COOH) in the pH calculation for comparison to observations. Observations 
(circles) are from the US National Trends Network (NTN), the Canadian Air and Precipitation Monitoring Network (CAPMoN), 
the European Monitoring and Evaluation Programme (EMEP), and the Acid Deposition Monitoring Network in East Asia (EANET). 
The EANET sites in Malaysia are not shown because of their different sampling procedure (see text). The insets in each panel show 
the spatial means of the observations for the corresponding region together with the corresponding GEOS-Chem means at the 
measurement locations. The mean GEOS-Chem pH values with RCOOH included in the pH calculations are also shown.  
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Figure 9: Acid wet deposition fluxes including post-depositional effects. Values are annual means for 2013 as simulated by GEOS-
Chem. H+ associated with carboxylic acids is excluded as these acids are rapidly consumed by bacteria. The free H+ flux represents 
the direct H+ input to ecosystems not accounting for any post-deposition nitrogen (N) transformation. The H+ flux for N-limited 
conditions is computed using Eq. (7) and assumes complete assimilation of NO3

- and NH4
+, while the H+ flux for N-saturated 

conditions is computed using Eq. (8) and assumes complete nitrification of NH4
+ and no assimilation of NO3

-. The global mean flux 
over continents in units of meq m-2 a-1 is indicated. 
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Appendix 

Table A1: Cloudwater pH observations grouped by region and listed from west to east and north to south. 

Location Altitude 
(km) Period Mean ± 

std dev Median Range Reference 

NE Pacific Ocean  

 

California coast 
29-33N; 121-123W 0–1  Jul, 2001 4±0.4 a, b 4 3.3–4.8  Straub et al. (2007) 

        

 

California coast 
35-37N; 122-123W a 0.12–0.8 Jul–Aug, 2011 4.5±0.7 - - Z. Wang et al. 

(2014) 
        

 

California coast  
34-43N; 119-126W 0.12–1 Jul–Aug, 2013 4.3±0.5 - - Prabhakar et al. 

(2014) 
        

 
Hawaii  

22N; 152W 0–1  Jun, 1980 4.5±0.1 a, c - 4.2–4.7 Parungo et al. 
(1982) 

        

 
Alaska, US  
58N; 135W 0.8 Aug–Sep, 1984; 

July–Aug, 1985 4.5±0.4 4.8 - Bormann et al. 
(1989) 

        

 
Whistler Mtn, Canada, 
50N;123N 1.7 Jun–Jul, 2010 4.4 b 4.4 - Ervens et al. (2013) 

        

 

Cheeka Peak, US,  
48N; 125W 1 May, 1993 4.2±0.2 - - Vong et al. (1997) 

        

 
Mary’s Peak, US, 
 45N; 124W 1.3 Jul–Nov, 1985 4.7±0.3 a 5.2 4.4-4.9 Bormann et al. 

(1989) 

Continental United States 

 
Mt. Washington  
44N; 71W 1.9 Jun–Aug, 2008–

2010 4.3 - - G. Murray et al. 
(2013) 

        

 
Whiteface Mountain  
44N; 74W 1.5 Jun–Sep, 2010–

2013 4.5±0.8 a - 3.4-6.6 Schwab et al. 
(2016) 

        

 

Michigan  
44-46N; 83-85W  1.4–3.1 Jul–Aug, 2005 4.4±0.8 a - 2.2-5.2 Hill et al. (2007);  

Pye et al. (2020) 
        

 

Mt. Elders  
35N; 112W 2.8 Jun–Sep, 2005–

2007 6.3±0.4 a - 5.1-6.6 Hutchings et al. 
(2009) 

Caribbean       

 
Puerto Rico 
18N; 65W 1.1 2004–2007 5.5±1.0 - - Gioda et al.(2011) 

Southeast Pacific Ocean 

 

Peru/Chile coast 
16-24S; 72-82W 0–1  Oct–Nov,2008 4.4±0.4 a - 3.5-6 Benedict et al. (2012) 
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Table A1 continued 

Location Altitude 
(km) Period Mean ± 

std dev Median Range Reference 

Ecuador 

  

Andes  
79W; 4S 1.9–3.2 2004–2009 5.0±0.5 a - - 

Makowski Giannoni et 
al. (2013, 2016);  
Pye et al. (2020) 

Europe 

 
Åreskutan, Sweden, 
 63N; 13E 1.3 Jul–Aug, 1983; 

Jul–Aug, 1984 4.4 - - Ogren & Rodhe (1986) 

        

 
Mt. Schmucke, Germany, 
51N; 11E 0.9 Sep–Oct, 2010 4.3±0.4 a 4.6 3.6-5.3 van Pinxteren et al. 

(2016) 
        

 

Mt. Milesovka, Czech 
Rep., 51N; 14E 0.8 May–June 2006 4.1±0.2 a - 3.8-4.7 Fisak et al. (2009) 

        

 

Mt. Szrenica, Poland, 
51N; 16E 1.3 Dec, 2005 – Dec, 

2006 4.6±1.0 a - 3.5-7.4 Błaś et al. (2010) 

        

 
Niesen, Switzerland, 47N; 
7-8E 1.6–2.3 Apr–Oct, 2006; 

Apr–Oct 2007 6.5±0.5 a - 5.8-7.7 Michna et al. (2015) 

        

 
Puy de Dome, France, 
46N; 3E 1.5 2001–2006; 2009–

2011 5.5±1.1 a 5.6 3.1-7.6 Deguillaume et al. 
(2014) 

        

 

Xistral Mountains, Spain, 
44N; 8W 0.9 Sep, 2011–Apr 

2012 4.5±0.4 a - 3.8-5.2 Fernández-González et 
al. (2014) 

Morocco 

 

Mt. Boutmezguida  
29N; 10W 1.2 Nov–Jun, 2013–

2015 7.3±0.4 a - 7–8.5 Schunk et al. (2018);  
Pye et al. (2020) 

India 

 
Sinhagad  
18N; 74E 1.5 2007–2010 6.0±0.7 a - 4.7–7.4 Budhavant et al. (2014) 

Tibet 

 

Sejila mountain  
30N; 95E 4 Jul, 2017–Sep, 

2018 6.1±0.3 - - W. Wang et al. (2019) 

East Asia 

 

Yellow Sea  
38N,125E 0.1 Jul, 2014 3.9±0.4 a - 3.5–5 Boris et al. (2016);  

Pye et al. (2020) 

 
Mt. Tateyama, Japan, 
37N,138E 2.5 Sept–Oct, 2007–

2009 4.5±0.7 a - 3.5–6.3 K. Watanabe et al. 
(2010) 
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Table A1 continued 

Location Altitude 
(km) Period Mean ± 

std dev Median Range Reference 

East Asia (contd.) 
        

 

Mt. Tai, China,  
36N; 117E 

1.6 
Jul–Oct, 2014 5.9±0.8 a - 3.8-7.0 J. Li et al. (2017) 

 

  
Mar–Apr, June–
July, Oct–Nov, 
2007; Mar–Apr, 
Jun–Jul, 2008 

4.3±1.3 a - 2.6-7.6 Guo et al. (2012) 

 
  Jun–Aug 2015 4.9±0.6 a - 3.8–6.3 Zhu et al. (2018) 

 
Mt. Lu, China,  
30N; 116E  1.2 Aug–Sep, 2011; 

Mar–May, 2012 3.8±0.7 a - 2.8–5.6 L. Sun et al. (2015) 

 
Mt. Heng, China,  
27N; 113E 1.3 Mar–May, 2009 3.8±1.0 a - 2.9–6.9 M. Sun et al. (2010) 

  
Ailaoshan, China, 
 25N; 101E 2.5 Dec 2015–Mar 

2016 4.1±0.4 a - 3.5–4.9 Nieberding et al. 
(2018) 

        

 

Mt. Bamboo, Taiwan, 
25N,122E 1.1 Jan–Mar 2009 4.1±0.6 a - 3.1–5.6 Sheu & Lin (2013) 

        

 
Chilan Mtn, Taiwan, 
25N,122E 1.7 Apr–May, 2011 4.5±0.4 a - 3.7–5.2 Simon et al. (2016) 

        

 
Lulin Station, Taiwan, 
23N,121E 2.9 Apr–May, 2011 3.9±0.3 a - 3.4–4.5 Simon et al. (2016) 

        

 

Mt. TaiMoSha, Hong 
Kong, 22N;114E 1 Oct–Nov 2016 3.6±0.7 a - 3.0–6.0 Li et al. (2020) 

Australia 

 

Cape Grim, 
40-42S; 144-149E 0.6–1.5 Jun, 1981; Mar, 

1983 5.5±0.5 - - Gillett & Ayers (1989)  

        

 
Jabiru,  
133E; 13S 2.7–3.7 Nov, 1985 3.8±0.4 a - 3.5–5.2 Ayers & Gillett (1988) 

Antarctic 

  
Antarctica coast  
78S; 167E 0.6–1.5 Dec, 1982 5.4±0.3 a - 4.9–6.2 Saxena & Lin (1990) 

a Standard deviation estimated as range / 4. 
b Median value used as the mean. 
c Mean estimated as (max+min) / 2. 
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